The transcription factors SOX9 and SOX5/SOX6 cooperate genome-wide through super-enhancers to drive chondrogenesis.

نویسندگان

  • Chia-Feng Liu
  • Véronique Lefebvre
چکیده

SOX9 is a transcriptional activator required for chondrogenesis, and SOX5 and SOX6 are closely related DNA-binding proteins that critically enhance its function. We use here genome-wide approaches to gain novel insights into the full spectrum of the target genes and modes of action of this chondrogenic trio. Using the RCS cell line as a faithful model for proliferating/early prehypertrophic growth plate chondrocytes, we uncover that SOX6 and SOX9 bind thousands of genomic sites, frequently and most efficiently near each other. SOX9 recognizes pairs of inverted SOX motifs, whereas SOX6 favors pairs of tandem SOX motifs. The SOX proteins primarily target enhancers. While binding to a small fraction of typical enhancers, they bind multiple sites on almost all super-enhancers (SEs) present in RCS cells. These SEs are predominantly linked to cartilage-specific genes. The SOX proteins effectively work together to activate these SEs and are required for in vivo expression of their associated genes. These genes encode key regulatory factors, including the SOX trio proteins, and all essential cartilage extracellular matrix components. Chst11, Fgfr3, Runx2 and Runx3 are among many other newly identified SOX trio targets. SOX9 and SOX5/SOX6 thus cooperate genome-wide, primarily through SEs, to implement the growth plate chondrocyte differentiation program.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new long form of Sox5 (L-Sox5), Sox6 and Sox9 are coexpressed in chondrogenesis and cooperatively activate the type II collagen gene.

Transcripts for a new form of Sox5, called L-Sox5, and Sox6 are coexpressed with Sox9 in all chondrogenic sites of mouse embryos. A coiled-coil domain located in the N-terminal part of L-Sox5, and absent in Sox5, showed >90% identity with a similar domain in Sox6 and mediated homodimerization and heterodimerization with Sox6. Dimerization of L-Sox5/Sox6 greatly increased efficiency of binding o...

متن کامل

L-Sox5 and Sox6 drive expression of the aggrecan gene in cartilage by securing binding of Sox9 to a far-upstream enhancer.

The Sry-related high-mobility-group box transcription factor Sox9 recruits the redundant L-Sox5 and Sox6 proteins to effect chondrogenesis, but the mode of action of the trio remains unclear. We identify here a highly conserved 359-bp sequence 10 kb upstream of the Agc1 gene for aggrecan, a most essential cartilage proteoglycan and key marker of chondrocyte differentiation. This sequence direct...

متن کامل

The protein kinase MLTK regulates chondrogenesis by inducing the transcription factor Sox6.

Sox9 acts together with Sox5 or Sox6 as a master regulator for chondrogenesis; however, the inter-relationship among these transcription factors remains unclear. Here, we show that the protein kinase MLTK plays an essential role in the onset of chondrogenesis through triggering the induction of Sox6 expression by Sox9. We find that knockdown of MLTK in Xenopus embryos results in drastic loss of...

متن کامل

Identification of SCAN Domain Zinc-Finger Gene ZNF449 as a Novel Factor of Chondrogenesis

Transcription factors SOX9, SOX5 and SOX6 are indispensable for generation and differentiation of chondrocytes. However, molecular mechanisms to induce the SOX genes are poorly understood. To address this issue, we previously determined the human embryonic enhancer of SOX6 by 5'RACE analysis, and identified the 46-bp core enhancer region (CES6). We initially performed yeast one-hybrid assay for...

متن کامل

SHOX interacts with the chondrogenic transcription factors SOX5 and SOX6 to activate the aggrecan enhancer.

SHOX (short stature homeobox-containing gene) encodes a transcription factor implicated in skeletal development. SHOX haploinsufficiency has been demonstrated in Leri-Weill dyschondrosteosis (LWD), a skeletal dysplasia associated with disproportionate short stature, as well as in a variable proportion of cases with idiopathic short stature (ISS). In order to gain insight into the SHOX signallin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 43 17  شماره 

صفحات  -

تاریخ انتشار 2015